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A POSTERIORI ERROR ESTIMATES FOR NONLINEAR PROBLEMS. 
FINITE ELEMENT DISCRETIZATIONS OF ELLIPTIC EQUATIONS 

R. VERFURTH 

ABSTRACT. We give a general framework for deriving a posteriori error esti- 
mates for approximate solutions of nonlinear problems. In a first step it is 
proven that the error of the approximate solution can be bounded from above 
and from below by an appropriate norm of its residual. In a second step this 
norm of the residual is bounded from above and from below by a similar norm 
of a suitable finite-dimensional approximation of the residual. This quantity can 
easily be evaluated, and for many practical applications sharp explicit upper and 
lower bounds are readily obtained. The general results are then applied to finite 
element discretizations of scalar quasi-linear elliptic partial differential equa- 
tions of 2nd order, the eigenvalue problem for scalar linear elliptic operators 
of 2nd order, and the stationary incompressible Navier-Stokes equations. They 
immediately yield a posteriori error estimates, which can easily be computed 
from the given data of the problem and the computed numerical solution and 
which give global upper and local lower bounds on the error of the numerical 
solution. 

1. INTRODUCTION 

The efficiency of a numerical method for the solution of partial differential 
equations strongly depends on the choice of an "optimal" discretization, the use 
of a fast and efficient algorithm for the solution of the discrete problem, and 
a simple, but reliable method for judging the quality of the numerical solution 
obtained. These three objectives are often interdependent. The first and last 
one are related to the problem of a posteriori error estimation, i.e., of extracting 
from the given data of the problem and the computed numerical solution reliable 
bounds on the error of the numerical solution. Of course, the computation of 
the a posteriori error estimates should be much less costly than the solution of 
the original discrete problem. 

Within the framework of finite element methods various strategies of a pos- 
teriori error estimation have been devised during the last 15-20 years (cf., e.g., 
[2, 3, 20, 27] and the literature cited there). They can roughly be classified as 
follows: 

(1) residual estimates: Estimate the error of the computed numerical solu- 
tion by a suitable norm of its residual with respect to the strong form of the 
differential equation (cf., e.g., [4, 5, 9, 19, 21, 25, 27]). 

(2) solution of local problems: Solve locally discrete problems similar to, 
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but simpler than, the original problem and use appropriate norms of the local 
solutions for error estimation (cf., e.g., [7, 8, 18, 22, 25, 27]). 

(3) sharp a priori error estimates: Derive sharp a priori error estimates and use 
suitable higher-order difference quotients of the computed numerical solution 
to estimate the higher-order derivatives appearing in the a priori error estimates 
(cf., e.g., [15, 16]). 

(4) averaging methods: Use some local averaging technique for error estima- 
tion (cf., e.g., [6, 21, 29, 30]). 

For a certain class of problems and discretizations it was proven in [28] that 
the methods (1) and (2) are equivalent in the sense that, up to multiplicative 
constants, they yield the same upper and lower bounds on the error of the 
numerical solution (cf. also [6, 13, 21] for the comparison of different error 
estimators). In this context it should be noted that, in order to be efficient, 
an a posteriori error estimation should yield upper and lower bounds on the 
error. Clearly, upper bounds are sufficient to ensure that the numerical solu- 
tion achieves a prescribed tolerance. Lower bounds, however, are essential to 
guarantee that the error is not overestimated and that its local distribution is 
correctly resolved. Often, only upper bounds are established in the literature. 

Various methods are used for constructing a posteriori error estimators and 
for proving that they yield upper and/or lower bounds on the error. These 
methods often depend on a particular class of problems and discretizations. A 
close inspection, however, reveals that they have certain principles in common. 
It is the aim of this paper to give a rather general framework that allows one to 
construct a posteriori error estimators and to prove that they yield upper and 
lower bounds on the error. In this general context we are satisfied with proving 
that the upper and lower bounds differ by a multiplicative constant which is 
independent of the mesh size. We neither intend to derive optimal estimates 
for this constant nor to prove efficiency of the error estimators, iLe., that the 
ratio of the true and the estimated error asymptotically tends to 1. This latter 
question is addressed for linear problems in e.g. [2, 3, 4, 5, 6, 7, 13, 14]. 

We consider in ??2-4 nonlinear equations of the form 

(1.1) F(u) = 0 

and corresponding discretizations of the form 

(1.2) Fhuh) 

Here, FeC1 (X, Y*) and Fh EC(Xh, Y*), Xh cX and Yh c Y arefinite- 
dimensional subspaces of the Banach spaces X and Y, and * denotes the dual 
of a Banach space. 

If u0 E X is a solution of equation (1. 1) such that DF (uo) is an isomorphism 
of X onto Y* and DF is Lipschitz continuous at u0, we prove in Proposition 
2. 1 that 

(1.3) cljF(u)11y* < jju - uollx < C-ljF(u)jjy* 

holds for all u in a suitable neighborhood of uo. The constants c and C 
depend on DF(uo) and DF(uo)1- . The proof of Proposition 2.1 is straight- 
forward. The conditions on F can be weakened considerably (cf. Remark 2.3). 
Inequality (1.3) is a local result. That means that it can be applied to solutions 
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of equation (1.2) only if they are sufficiently close to uo, i.e., if the discretiza- 
tion is "sufficiently fine". This is not surprising since we are dealing with general 
nonlinear problems, which may have a large variety of solutions. If problem 
(1.1) is linear, i.e., DF is constant, inequality (1.3) of course holds for all 
u E X. 

In ?3 we briefly outline how the results of ?2 can be extended to branches 
of solutions of equation (1.1), including singular points such as simple limit 
and bifurcation points. The generalization to the case of a regular branch of 
solutions, i.e., situations covered by the implicit function theorem, is straight- 
forward. The case of a simple limit or bifurcation point can be reduced as 
in [12] to the case of a regular branch of solutions by suitably blowing up the 
spaces X and Y and modifying the function F. For practical applications it 
is important that the additional spaces are finite-dimensional. Thus, the cost 
for evaluating the residual of the modified function is essentially determined by 
the cost for evaluating the residual of F. 

In ?4, we estimate the residual IIF(uh) Iy*, where Uh is an approximate 
solution of equation (1.2). To this end, we introduce a restriction operator 
Rh: Y , Yh, a finite-dimensional subspace Yh C Y, and an approximation 
Fh: Xh - Y* of F at Uh which are coupled via inequality (4.1). For practical 
applications, the construction of Rh and Fh is rather straightforward. Usually, 
Fh(uh) is obtained by locally projecting F(uh) onto suitable finite-dimensional 
spaces. This corresponds to the well-known technique of locally freezing the 
coefficients of a differential operator. The choice of Yh on the other hand is 
less obvious. It is, however, considerably simplified by the auxiliary results 
of ?5 (see also below). We then prove in Proposition 4.1 that, up to multi- 
plicative constants and additive correction terms, IIF(uh)IIy* is bounded from 
below and from above by I I-(uh)II I. The latter can be evaluated quite easily 
since its computation is equivalent to a finite-dimensional maximization prob- 
lem. Moreover, sharp explicit bounds on IIFh(uh)I Ij are readily obtained for 
many practical applications. When applying the general results to finite element 
methods, the aforementioned multiplicative constants essentially depend on the 
element geometry and on the polynomial degree of the finite element functions. 
In principle, they can be estimated explicitly. The aforementioned correction 
terms consist of the following quantities: 

(1) the residual IlFh (Uh) 11 Yh of the discrete problem (1.2), 
(2) the consistency error IIF(uh) - Fh (Uh) Y* of the discretization, and 
(3) a term which measures the quality of the approximation of F(uh) by 

Fh(uh). 

The first quantity can easily be estimated from Uh and the given data. The 
second one can be bounded a priori. For many practical applications one can 
finally prove that the third quantity is a higher-order perturbation when com- 
pared with IIFh(Uh)IIj-h h 

In this section we also give a framework which covers some of the a posteriori 
error estimators based on the solution of auxiliary local problems, such as the 
one described in [4, 5], and which shows that these estimators are equivalent to 
the residual a posteriori error estimator considered before. 
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As already mentioned, we establish in ?5 some auxiliary results which simplify 
the construction of Yh . The main result is of the form (cf. Lemma 5.1) 

(1.4) O<a? inf sup fs uysv - 
UEVs\{O}vEVs\{O} IIUIILP(S) IIV11Lq(S) 

Here, 1 < p < o, 1 +1 = 1, S is either a simplex in Rn or a face of such a 
'p q 

simplex, Vs is a finite-dimensional space of functions defined on S, and V's is 
a cutoff function. It is important to note that the constant a is independent of 
S. Lemma 5.1 is a generalization of Lemma 4.1 in [28]. Thanks to inequality 
(1.4), one can show that for finite element methods, Yh can be chosen as the 
space of all linear combinations of functions vsv , where v E Vs and S varies 
through all elements and their faces. 

In ??6-8 we apply the general results of the previous sections to finite ele- 
ment approximations of scalar quasi-linear elliptic partial differential equations 
of 2nd order, the eigenvalue problem for scalar linear elliptic differential oper- 
ators of 2nd order, and the stationary incompressible Navier-Stokes equations 
(cf. Propositions 6.1, 6.3, 6.4, 6.5, 7.1, 8.1, and 8.4). In all examples we obtain 
upper and lower bounds for the finite element error in terms of a residual a 
posteriori error estimator. This error estimator essentially consists of the ele- 
mentwise error of the finite element functions with respect to the strong form 
of the differential equation and of jumps across inter-element boundaries of 
that boundary operator which naturally links the strong and weak forms of the 
differential equation. Some of the results of ??6-8 are completely new, others 
are generalizations of, and improvements upon, results previously obtained in 
[4, 5, 7, 8, 9, 19, 25, 27, 28]. 

2. ERROR ESTIMATES FOR ISOLATED SOLUTIONS 

Let X, Y betwoBanachspaceswithnorms ll lix and 1.1l y. Foranyelement 
uEX andanyrealnumber R>O set B(u, R):= {v EX: lIu-vllx <R}. We 
denote by 2(X, Y) and Isom(X, Y) c 2(X, Y) the Banach space of contin- 
uous linear maps of X in Y equipped with the operator norm 11 l,(x, Y), and 
the open subset of linear homeomorphisms of X onto Y. By Y* := Y(Y, 1R) 
and (., ) we denote the dual space of Y and the corresponding duality pair- 
ing. Finally, A* E 2(Y*, Y*) denotes the adjoint of a given linear operator 
A E 2(Y, Y). 

Let F E C1 (X, Y*) be a given continuously differentiable function. The 
following proposition yields a posteriori error estimates for elements in a neigh- 
borhood of a solution of equation (1.1). 

Proposition 2.1. Let uo e X be a regular solution ofequation (1.1); i.e., DF(uo) 
E Isom(X, Y*). Assume that DF is Lipschitz continuous at uo; i.e., there is 
an Ro > 0 such that 

y:= sup IIDF(u) -DF(uo)IIy(x, y*) < . 

uEB(uo, Ro) |lu - uollx 

Set 
R:=~~~~~ mi_R . y- _JFu- 

_- 
2y1 _JFu)Jyx y- . 
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Then the following error estimates hold for all u E B(uo, R): 

(2. l) 2 IDF (UO) -Sx, y) IF (u) 11Y* (2.1)~~~ 

? I1u - uollx < 2IIDF(uo) - II(y* ,X) IIF(U)11Y*. 
Proof. Let u E B(uo, R). We then have 

u - = DF(uo)- {F(u) + [DF(uo) - DF(uo + t(u - uo))](u - uo) dt} 

and thus 

llu - UoIIx 
< IIDF(uO)-1 Ijy(y_,x) 

{ jIF(u)11y* + j IIDF(uo) - DF(uo + t(u - uo))l15(x, y*)IIu - uolix dt} 

? IIDF(uo)-1 I(y-* ,X) {IIF(u)11Y* + 2yIIu _ UOIIX} 

? ItDF(Uo)-1II(y * X)IIF(U)IIY* + 2IIu - UoItx. 

This yields the second inequality in (2.1). 
On the other hand, we have for all (0 E Y with I19 II I = 1 

(F(u), (a) = (DF(uo)(u - uo), ) 

(2.2) + K [DF(uo + t(u- u)) -DF(uo)](u-uo)dt, (o 

and thus 

jF(u)jjy* < IIDF(uo)II,(x, y*)tjU - Uollx 

+ j IIDF(uo + t(u - uo)) - DF(uo)I I.(X, y*)Iu - Uollx dt 

? IIDF(uo)jL?(x,y*)Iju - UolIx + 2yIIu - UoIx 

? 2jjDF(uo)jLy(x,y*)jju - UoIIx. 

This proves the first inequality in (2.1). O 

Remark 2.2. In the examples of ??6-8, X and Y are closed subspaces of suit- 
able Sobolev spaces of functions defined on an open set I c RnR. When con- 
sidering in equation (2.2) only functions ep with support in a given open subset 
co c Q, one then often obtains lower bounds for u - u0 restricted to to. 0 

Remark 2.3. The conditions about F can be weakened. Assume, e.g., that 
F E C(X, Y*), F(uo) = 0, and that there are an R > 0 and two monotonically 
increasing homeomorphisms o, a of [0, ox) onto itself such that 

(2.3) Q(IIu - uolix) < jIF(u)jjy* < a(jju - uolix) VU E B(uo, R). 
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We then trivially have 

-i (IIF(u)IIy*) < 1lu - uollx < 8-l(IF(u)IIy*) Vu E B(uo, R). 
The first inequality in (2.3) is satisfied if, e.g., F is strongly monotone in a 
neighborhood of uo. The second inequality in (2.3) holds if, e.g., F is Holder 
continuous at uo . ? 

3. ERROR ESTIMATES FOR BRANCHES OF SOLUTIONS 

In this section we briefly outline how the results of the previous section may 
be extended to branches of solutions of equation (1.1), including simple limit 
and bifurcation points. To this end, we assume that X = Rlm x V, m > 1, and 
that uo = (AO, vo) is a solution of equation (1.1). 

We first consider the case that uo is a regular point, i.e., 

DvF(uo) E Isom(V, Y*). 

The implicit function theorem then implies that there are neighborhoods I of 
lo in 1R"m and U of vo in V and a continuous map A -- vA from I into U 
such that vA, = vO and every uA := (A, vA) is a solution of equation (1.1) with 
DvF(UZ) E Isom(V, Y*). Assume that there is an R* > 0 such that 

y* := sup sup 
IIDvF(, v) -DvF(A, VA)lII(' Y.< o 

AEI vEB(vA,R*) liv - VA,liv 

and set 

R* := min{R*, y*I sup IIDvF(uz) 1 I(.11- v), 2y* sup IlDvF(uA)lIy(v, y*)}. 
)AEI Y)* 

V 
EI 

With the same arguments as in the proof of Proposition 2.1 we then obtain for 
all A e I and all v e B(vz, R*) the estimates 

(3.1) 2 IIDvF(uj)II(v y*)IIF(A v) jy* 
< lIv -vAIIv < 2IIDvF(uA)-1 II.(y*, v) IIF(A, v)IIY* . 

As described in [12], the case where uo is not a regular point, but a simple 
limit or bifurcation point, may be reduced to the case of a regular point by 
suitably blowing up the spaces X and Y and modifying the function F. For 
completeness, we briefly describe this procedure. 

Consider first the case that uo is a simple limit point; i.e., DF(uo) is a 
Fredholm operator of X onto Y* with index m and Range(DF(uo)) = Y* 
but DvF(uO) f Isom(V, Y*). Choose a linear operator B E 2(X, Rm) with 
ker(B) n ker(DF(uO)) = {0} and define D E Cl (Rm X X, Rm x Y*) by 

(D(t, u) := (B(u - uo) - t, F(u)). 

Then, (0, uo) is a regular point of 1D (with respect to the parameter t), and 
we are back to the situation described in the first part of this section. Since B 
is linear, conditions about the Lipschitz continuity of DO reduce to those on 
DF. Equation (3.1) yields in this case estimates of the form 

(3.2 c{jjB(u - uo)- tllR + IIF(u) I Y*y} ?< j2. -At lRm + V - Vt 
II V 

(k) < f{llB(u - uO)- tllm + IIF(u) II y- } 
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for all t in a suitable neighborhood of 0 and all u = (A, v) in a suitable 
neighborhood of ut = (At, Vt) . Here, t -- ut is a regular branch of solutions of 
DI(t, u) = 0. Note, that Buo is often known explicitly and that the estimation 
of IIB(u- uo) - tIIRin is straightforward, since it is a low-dimensional maximiza- 
tion problem. The term IIF(u)IIy* , on the other hand, may be estimated by the 
methods of the next section, as in the case of regular solutions. 

Next, we consider the case of a simple bifurcation from the trivial branch. 
That is, we assume that uo = (, 0) and that DvF(uo) is a Fredholm operator 
with index 0 and dimker(DvF(uo)) = 1. Choose a w0 E ker(DvF(uo))\{O} 
and a linear functional 1 E Y(V, R) with l(wo) = 1. Define the function 
D E C(R x X, R x Y*) by 

,S,(, u)= T(I(v) -1, IF(A, tv)), t#O -~5u = (A5 v) E X5 
(1(v)- 15 DvF(A, O)v), t= O, u = (A v) eX. 

Conditions about the Lipschitz continuity of DO now reduce to those on D2F . 
Obviously, we have D(O, io) = 0, where fio := (AO wo). If F is of class C2 
in a neighborhood of u0 and DL2vF(uo)wo 0 Range DvF(uo) , we conclude that 
i0 is a regular point, and we are once more back to the situation described in 
the first part of this section. Equation (3.1) now yields estimates of the form 

(3.3) c{ l1(w) - II + IIDvF(A, O)w IIy*} I< IIA -/OIIRm + IIW -WOII V 
< Z{ll(w) - 11 + IIDvF(A, O)wIIy*} 

for all (A, w) in a suitable neighborhood of iuo and 

c I(w) - 11 + -F(AX ,tw) < IIA - AtIIRm + 11W WtIIV 

< c11l(w) - 1 + ||tF(A5 tw)|} 
for all t # 0 in a neighborhood of 0 and all (A, w) in a suitable neighborhood 
of it = (At, Wt). Here, t -- it is a regular branch of solutions of DI(t, u) = 
0. Note that the constants in equations (3.3), (3.4) now depend on second 
derivatives of F. 

Finally, we consider the case of a simple bifurcation point; i.e., DvF(uo) is 
a Fredholm operator of index 0 and q := dim(kerDF(uo)) - m > 1. Choose 
a basis (o, ... , f of Y*\Range(DF(uo)), set X :=R x X, quo :=(O, uo), 
and define the function F E C1 (X, Y) by 

q 
F(&'):=F(u)-ZfJi#7 Va&=(f,u)E X. 

i=l 

Obviously, we have F(i&o) = 0. Moreover, DF(z&o) is a Fredholm operator 
with index m + q and Range(DF(iiO)) = Y*. Replacing X, uo, and F by 
X, zu, and F, respectively, we are thus back to the situation considered in 
the second part of this section. 

4. ESTIMATION OF THE RESIDUAL 

Let Xh c X and Yh c Y be finite-dimensional subspaces and Fh E C(Xh, Yh*) 
be an approximation of F. We want to estimate IIF(uh)IIy*, where Uh E Xh 
is an approximate solution of equation (1.2). 
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In what follows, c, co, cl, ... denote various constants which are indepen- 
dent of h. 

Proposition 4.1. Let Uh E Xh be an approximate solution of equation (1.2); 
i.e., IIFh(Uh) lYh is "small". Assume that there are a restriction operator Rh E 

5(Y, Yh), a finite-dimensional subspace Yh C Y, and an approximation Fh: 
Xh -Y* of F at Uh such that 

(4.1) II(Idy-Rh)*Fh(uh)IIy* < CoIIJTh(uh) II. 

Then the following estimates hold: 

IIF(Uh)IIY* < CoIIFh(Uh)IIj. + ||(Idy -Rh)*[F(Uh) - Fh(Uh)IIIY* 

(4.2) + IIR ILS(y,Yh) IIF (Uh -Fh(Uh )IIYh 
+ |h II.Y(Y, Z # h( h (U) 11 Yh ' 

+ IIRhIIY(Y, Yh) I Fh (Uh) II Yh* 
and 

(4.3) IIFh(uh)IIj* < IIF(uh)IIj. + IIF(uh) - Fh(uU)hly) 

Remark 4.2. In the examples of ??6-8, Xh and Yh are suitable finite element 
spaces. The choice of Rh is then quite natural. Fh(Uh) is obtained by projecting 
F(Uh) elementwise onto suitable finite-dimensional spaces. This construction 
is also rather standard. The main difficulty is to find a space Yh such that 
inequality (4.1) is satisfied. This task is simplified by the auxiliary results of ?5. 
The second terms on the right-hand sides of equations (4.2) and (4.3) measure 
the quality of the approximation Fh(uh) to F(uh). Usually, they are higher- 
order terms when compared with IlFh(uh)11j. . The term IIF(uh) - Fh(uh)IIyh* 

is the consistency error of the discretization. The term IlFh(uh) lyh measures 
the residual of the algebraic equation (1.2) and can easily be evaluated. 

Proof of Proposition 4.1. Consider an arbitrary element (0 E Y with II 9 II y = 1 . 
We then have 

(F(Uh), &' = (Fh(Uh), (-Rh() + (F(uh) - Fh(u), U - Rh9) 

+ (F(uh) -Fh(uh), Rhp) + (Fh(Uh), Rh p) 

< ||(Idy -Rh)*Fh(Uh)IIY* + ||(Idy -Rh)*[F(Uh) - Fh(Uh)]IIY* 
+ IlRh IL(Y, yh)IIF(Uh) -Fh(Uh)IIYh + IlRh IIY(Y, Yh)lIFh(Uh)lYh- 

Together with inequality (4.1), this proves estimate (4.2). Estimate (4.3) follows 
from the triangle inequality. 0 

When combining Propositions 2.1 and 4.1 we obtain a residual a posteriori 
error estimator. The following proposition together with Proposition 2.1 yields 
a framework for some of those a posteriori error estimators which are based on 
the solution of auxiliary local problems, such as the one described in [4, 5]. 

Proposition 4.3. Let Uh E Xh be an approximate solution of equation (1.2). 
Assume that there are finite-dimensional subspaces Xh c X and Yh c Y and a 
linear operator B E Isom(Xh, 7Yh) such that kh C Yh and 
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Let Uh E Xh be the unique solution of 

(4.5) (B 'h, (0) = (Fh(Uh), (0) V?o E yh 

Then the following estimates hold: 

(4.6) JIB II-l |"(2 |yF<l h ,a<C I--ly(h, X * ) 11h Y (4.6) IIBI K1 IIFhz(Uh)IIj- ? IIUhIll- ? ciIIB I~ hIIIFh(Uh)IIY*. 
5I2(Xh,Y~~~*)Xhh h Xh 

Proof. Since B E Isom(Xh, Yh, ), we immediately obtain from equation (4.5) 
the estimate 

(4 

7) 

~~~IIBI-^|Fh(Uh)IIyt < IlUhll- < JIB -l(h X) IIh(UYhII 
5(Xh,IYh* Yh Xh h' )h 

Together with inequality (4.4), this proves the upper bound of inequality (4.6). 
Since Yh C Yh, we have 

IIFh(Uh)II|y < IIFh(Uh)IIy*E 

Together with inequality (4.7), this proves the lower bound of inequality 

(4.6). o 

Remark 4.4. Usually, B is some approximation of DF(uh) . The construction 
of Yh and the proof of inequality (4.4) are similar to the construction of Yh 
and the proof of inequality (4.1) and are simplified by the auxiliary results of 
?5. Once B and Yh are chosen, the construction of Xh is quite obvious from 

the condition that B E Isom(Xh, Yh ). 

5. AUXILIARY RESULTS 

Let Q be a bounded, connected, open domain in Rn , n > 2, with poly- 
hedral boundary F. For any open subset co c Q with Lipschitz boundary 
y, we denote by Wk,s(w), k e N, 1 < s < ox, Ls(co) := WO?s(,), and 
Ls(y) the usual Sobolev and Lebesgue spaces equipped with the standard norms 

IV IIk, s; w := I III Wk s(co) and I IIs; y := I IIILS(y) (cf. [1]). If o = Q, we omit the in- 
dex co. We use the same notation for the corresponding norms of vector-valued 
functions. 

Let 9h, h > 0, be a family of partitions of Q into n-simplices, which 
satisfies the following conditions: 

(1) Any two simplices in Th are either disjoint or share a complete smooth 
submanifold of their boundaries. 

(2) The ratio hT/QT is bounded from above independently of T E 9h and 
h > 0. 

Here, hT, QT, and hE denote the diameter of T E 9h, the diameter of the 
largest ball inscribed into T, and the diameter of a face E of T. Note, that 
condition (2) allows the use of locally refined meshes and that it implies that 
the ratio hT/hE, for all T E 9h and all faces E of T, is bounded from above 
and from below by constants which are independent of h, T, and E. 

Denote by ?h the set of all faces of all T E h. The set ?h may be de- 
composed as ?h = Fh , U Fh,r, gh , n lh r = 0, where Fh r denotes the set 
of all faces lying on F. Given an E E ?h, we denote by COE the union of all 
simplices in 9h having E as a face. Similarly, COT, T E 9h, is the union of all 
simplices sharing a face with T. For any E E ?h and any piecewise continuous 
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function p, we denote by [NDIE the jump of (p across E in a fixed direction. 
Here, (p is continued by 0 outside Q and the direction is given by the exterior 
normal of F if E E *, r - 

For k E N, we define 

"h' . = f(p: Q --+ : (P I T E Ilk VT E Tkl, Shk : h 'n C(Q2). 
Here, 171k, k > 0, is the space of polynomials of degree at most k. Moreover, 
we denote by 7rk,S, S E 3h U gh, the L2-projection of L1(S) onto Uk Is. 

Using standard scaling arguments for finite elements, we finally conclude 
from [111 that there is an "interpolation" operator Ih: L1 (i) -+ S0 which 
satisfies the following error estimates for all T E h , E E ?h, and 1 < q < oo: 

(5.1) 11(-IIh(Ik,q;T < c1hkj1f1O11 q;_ VO < k < I < 1, (0 E Wl,q(PT), 

(5.2) kP -Ih(PIq;E < Cc2h I ,l/ 1 VW E WlEqVqE), 

where 1T and C3E denote the union of all elements having a nonempty inter- 
section with T and E, respectively. Here and in what follows, we adopt the 
usual convention that /x o 0. 

Denote by T:= {x E R:n i= 1, ?> 0, 1 < j < n} the reference 
n-simplex. Set E := T n { E n Xn = 0}, and let XT and E be the 
barycenters of T and E, respectively. The following conditions uniquely define 
two functions Y-T, ' E e C?o?(T, R): 

Y'Efn+l, YT-(X'-)= Y/T^=? on9T, 

/E- E nn , VE (X'^ = VYE- = O on i9T\E. 

Note, that the above conditions, in particular, imply that 

-?y,j~?l, YJT-j~?l ma p^ in T. 

We define a continuation operator P: L? (E) - L? (T) by 

xi*1 *, Xn) =(xi,.. Xn_l 'XET E LOO(E). 

Finally, VT c LOO(T) and VE c Lm(E) are two arbitrary finite-dimensional 
spaces, which are kept fixed throughout this section. 

Let T E 9h be an arbitrary n-simplex and E c a T be a face of T. There 
is an invertible affine mapping FT: T T, X' X_ X FT(X) = bT + BTX 
such that T is mapped onto T and E is mapped onto E. Denote by BT 
the matrix which is obtained from BT by discarding its last column, and set 
fiT := det(B"B )1I2, the Gram determinant of the transformation E -* E. Set 

VT := {T- ? FTiI } V E :={&F F: FT1 } 

VT := { U ? FT7 1: U' E VT} , VE := {Co FT7 : a E VI^}* 

Finally, we define the continuation operator P: LOO(E) -3 L??(T) by 

Po:= [P oFT]oFiT1. 

In what follows, p, q are two fixed real numbers with 1 < p < ox and 
+ I = 1, and denotes the spectral norm on Rln X. 



A POSTERIORI ERROR ESTIMATES FOR NONLINEAR PROBLEMS 455 

Lemma 5.1. There are constants c1, .. ., C7, which only depend on the spaces VT- 
and VE^--,the number p, and the ratio hr/er, such that the following inequalities 
hold for all u E VT and all a E VE: 

(5.3) Cl II UIIO,p; T < su p IIVII < IIUIIO,P; T 
V EVT JIVIjIO,q;T 

- Ilopr 

(5.4) C2I1IICp;E < 
sup fEa 

IET< ?1II|ip;E, 
TEVE IITIIq;E 

(5.5) c3hI |jjYTUjjo,q;T < |IV(yUTU)IIO,q;T< c4hX IIITUrIIo ,q;r, 
(5.6) c5h*IIIjYEPoIIO,q;T < jIV(YEPa)IIO,q;T < C6hXTIIYEPcYIIo,q;T, 

(5.7) IIVEPCJOj,q;T < c7h llJyjJIq;E. 
Proof. The upper bounds of equations (5.3), (5.4) immediately follow from 

H6lder's inequality and 0 < ViT < 1, 0 < W/E < 1. 
In order to prove the lower bound of equation (5.3), one easily checks that 

the mapping 

fi--+ SUPV 
EV? 1IDIIIoq;:F 

defines a norm on VT . Since dim VT < oo, there is a constant c > O such that 

c u ~~~~fF Ul/r E CIIttIIQj P;T< SUP T F E V. 
'DEV jV-F tO, q; - 

Now, take an arbitrary u E VT. Set u := u o FT E VT and choose a wt E VT 
such that 

11W1 q;T =1 and fUV.IiqW ? cIuT =Op;T. 

With w := w' o FT we then obtain 

SUP >IT ,rITII =IdetBTI /J; VIjW 
VEVT JV I, ; I 1,q 

? c det BT|/P IIUIIO,P;T = 'IIUIIO,p;rT 
The proof of the lower bound of equation (5.4) is completely analogous. One 

only has to replace I det Bri by fir. 

The mappings 

u IIV(' -i)II0q;7T and a - -IIV(V'P&)II0, q;jT 

define norms on VT and VE. Since v' and WE vanish at the vertices of 

T, and since dim VT < oo and dim V < oo, these norms are equivalent to 

Il^UIIO q;T and IIvIEPcr I0q.T respectively. Estimates (5.5), (5.6) now follow 

in the usual way by transforming to T, using the equivalence of norms there, 

and transforming back to T. 

With the same arguments as above we finally conclude that there is a constant 

c > 0 such that 
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Since 
IdetBTI < ?11BTIljn < chn fl-1 < 11jBT-jlln-1 < chl-n 

this implies for all a E VE 

[lYIEPlO, q; T = I det BTj | II || E ||oq; T < el detBTIl| ||a I q;E 

- cl deTB /T / |a|q;E < C7hT /iJOIq;E. 

Remark 5.2. The estimates of Lemma 5.1 also hold for "slightly curved" sim- 
plices. More precisely, assume that the transformation FT is no longer affine, 
but that it still is a diffeomorphism. Let AT: T -+ Rn be the invertible affine 
mapping which is uniquely determined by the condition that A -1 o FT leaves 
the vertices of T invariant. Denote by aT the Gram determinant of the trans- 
formation of E induced by AT. A simple perturbation argument then shows 
that the estimates of Lemma 5.1 remain valid, provided 

11111 -DFF1'DATIII o;T^ 11111'-DADFTIII TIO,oo;T ' 

III -|I det DFTI | 1 |det DAT |Il T1 I 1 1-lATlo 1 ; -EII 
are smaller than a positive threshold which only depends on the constants in 
the corresponding estimates on T. n 

Thanks to Lemma 5.1, we may construct in the next section spaces Yh and 

Yh satisfying the conditions of Propositions 4.1 and 4.3 by considering all linear 
combinations of functions V/Tv and yIEPa, where v and ar vary in suitable 
spaces VT and VE, respectively, and T and E run through all simplices and 
faces of the finite element partition. 

Note that Lemma 5.1 does not depend on the fact that vT- and vE are 
polynomials. This special choice has only been made for convenience. 

6. SCALAR QUASI-LINEAR ELLIPTIC EQUATIONS OF 2ND ORDER 

Consider the boundary value problem 

(6.1) -V - a(x, u, Vu) = b(x, u, Vu) in Q, 

(6)u=O onF, 

where b E C(Q x R x Rn, R) and a E C1(Q x R x Rn, Rn) are such that 
the matrix A(x, y, z) := (2 (az ai(x, y, z) + az,aj(x, y, z))1<, j<n is positive 
definite for all x E Q, y E R, z E Rn 

Under suitable growth conditions on a, b, and their derivatives there are 
real numbers 1 < r, q < oo such that the weak formulation of problem (6.1) 
fits into the framework of ?2 with 

X := {u E Wl (Q): u = on r}I, || Ilx =1 |* ll,r 

Y:= {1o E Wl,(Q) : u=O onF}, j IYj :j IIl,q, 

(F(u), (0) := Ja(x, u, Vu)V(o - b(x, u, Vu)(o. 

Denote by p := - q the dual exponent of q. Note that DF(u) E Isom(X, Y*) 
if the linear boundary value problem 

- V * (A(x, u, Vu)Vv) - V * (Oya(x, u, Vu)v) 

- Vzb(x, u, Vu) * Vv - ayb(x, u, Vu)v =f in Q, 
v=O onJ 
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admits for each f E Y* a unique weak solution v E X which depends contin- 
uously on f . 

Some examples of problems falling into the present category are given by: 
(1) The equations of prescribed mean curvature: 

a(x, u, Vu) [1 + IIVU112]-/2VU, 
b(x, u, Vu) :=f(x) EL2(Q), 

r := q := 2. 

(2) The a-Laplacian: 

a(x, u, Vu) IVuII-2Vu, a > 1, 
b(x, u, Vu) f(x) E LP(Q), 

r:= q := a. 

(3) The subsonic flow of an irrotational, ideal, compressible gas: 

a(x, u, Vu) I= - Y2 11VU112 Vu, y > I 

b(x, u, Vu) := f(x) E LP(Q), 

r := q := 
2 

. 

(4) The stationary heat equation with convection and nonlinear diffusion 
coefficient: 

a(x, u, Vu) := k(u)Vu, 
b(x, u, Vu) := f - c* Vu, 

f E LI?(Q), c E C(Q, RI), k E C2(R), 

k(s) >oa> O, 1() (s) I< y, VS ER, 1=0, 1,2, 
r :=p E (2, 4). 

(5) Bratu's equation: 

a(x, u, Vu) := Vu, 
b(x,u,Vu):=Aeu, A >O, 

r := p > n. 

(6) A nonlinear eigenvalue problem: 

a(x, u, Vu) := Vu, 

b(x, u, Vu) :=Au - u0, ,8> n, 
r := p > n. 

Example (2) fits into the framework of Proposition 2.1 if a > 2. If 1 < a < 
2, the corresponding function F is no longer differentiable. However, it still 
fits into the framework of Remark 2.3 with 

Q(t) = c{IluolIx + t}a-2t, a(t) = et- 

(cf. [10, ?5.3]). 
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In example (5) there is a critical parameter A* > 0 such that the problem 
admits two weak solutions if 0 < A < A*, exactly one weak solution if A = A*, 
and no solution if A > A*. The solution corresponding to A = A* is a turning 
point and fits into the framework of the second part of ?3 (cf. [12]). 

Example (6) always admits the trivial solution. If A is a simple eigenvalue 
of the Laplacian, there is a simple bifurcation which fits into the framework of 
the third part of ?3 (cf. [121). 

We do not specify the discretization of problem (6.1) in detail. We only 
assume that Xh C X n W1 '?(Q) and Yh c Y n W1 '?(Q) are finite element 
spaces corresponding to Th consisting of affinely equivalent elements in the 
sense of [10], and that S1'? n Y c Yh. 

In order to construct Rh, Fh and Rh, we define two integers k, I and 
approximations ah of a and bh of b as follows: 

a(x, Uh, VUh), if a(x, Vh, VVh) E S,k' 1 VVh E Xh, 

gh(X, Uh, VUh) 7rl,T a(x, Uh, VUh), k:= 1, otherwise, 
T1E -Th~ 

(b(x, Uh, VUh), if b(x, Vh, VVh) ES' 1 VV EXh, 

bh(X, Uh, VUh) = z 
Tro,rb(x, Uh, VUh), l:=0 otherwise. 

Here, Uh E Xh is arbitrary. Now, Fh is defined in the same way as F with a 
and b replaced by ah and bh, respectively, Rh := Ih, and 

Yh := span{yITv, IEPa7: V E Hm I T, a E fk IE , T E h , E E eh,Q}, 

where m := max{k - 1, 1}. 
Put, for abbreviation, 

eT P{il- V. (a(., Uh, VUh)-Ah(-, Uh, VUh)) 

- (b( Uh, Uh) -bh( Uh, Uh))I IO, p; T 

(6.2) + z 
hEII[n * (a(., Uh, VUh) 

EC9 T\r 

i/p 

(h Uh Vu))UEIhp;EI VTTe3g, 

(6.3) 

QT := {14II-V ah(., Uh, VUh) bh(', Uh, VUh)IIPOp;T 

I /p 
+ Z hEII[n.ah(', Uh VUh)1EIIp;E} VTe 9h. 

ECO T\r 

The quantity CT obviously measures the quality of the approximation of a 
and b by ah and bh , respectively, and can be estimated explicitly. Below, we 
will show that j|(Idy -Rh)*[F(uh)- Fh(u )lIy and IIF(uh)- Fh(uh)II are 

bounded from above by C{ETEX Z PT 4}lIP . 
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Note that 

i6T= hTIfll-O,TfIIO,p;T VTESh, 

if Xh c Sh '? in examples (1)-(3), that 

6T ? Chr()T IIVUhIIo,p;T VT E g 

if Xh c S^' 0in example (4), that 

8T < ch IIVuhIIo,p;Texp(IIuhIIo , ;T) VT E 8 

if Xh consists of piecewise polynomials in example (5), and that 

eT=0 VTegh 

if Xh consists of piecewise polynomials and 8I E N in example (6). 
Using integration by parts elementwise, we obtain for all (0 E Y 

(F(uh), (P) = j{-V a(x, Uh, VUh) -b(x, Uh, VUh)}9 

(6.4) TEA T 

+ E j[n-a(x,Uh,VUh)]E(P 
EEih , a 

and 

(Fh (Uh), ) (= P IT-V h(X, Uh, VUh)-bh(x, Uh, VUh)}(0 

(6.5)TEh 
+ Z j[n.ah(xuUh, VUh)]EV 

EEh, a 

Lemma 5.1, inequalities (5.1), (5.2), the definition of Yh , and equalities (6.4), 
(6.5) then imply that 
(6.6) 

11(Idy -Rh)*[F(Uh) - Fh(Uh)]IItY 

- sup E {-V * (a(x, Uh, VUh)-ah(X, Uh, VUh)) 

jpEy=I TEh 

- (b(x, Uh, VUh) - bh(x, Uh, VUh))}{9 -IhI} 

+ , j[n * (a(x, Uh, VUh)-ah(X, Uh, VUh))IE{(0-IkI0} 

EE'h, a 

{ 1 /p 

TE T TEJ';h 
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and 
(6.7) 

IIF((Uh -Fh (Uh)IIy* 

- sup T-V * (a(x, Uh, VUh)-ah(X, Uh, VUh)) 
9hEYh TEgh- 

1'Ph 11Y=1 

- (b(x, Uh, VUh)- bh(X, Uh, VUh))}1h 

+ [ j[n*(a(x, Uh, VUh)-ah(X, Uh, VUh))]E(Oh 

i/p 

< C T EeT 

JT 

Similarly, we obtain 
(6.8) 

11(Idy -Rh)* Fh(Uh)IIY* 

s sup E f{-V.ah(x, Uh, Vuh)-bh(X, Uh, VUh)}{-Ih} 
q'E Y T E J7h II(PIIy=1 

+ j[n * ah(X, Uh, VUh)]E -Ih } 

EE'h, a 

I /p 

< c { JT <T E :;h- 

and 
(6.9) 

(Uhl|yF= SUp Z {-V.ah(X, Uh, Vuh)-bh(X, Uh, VUh)}h h h)11j h hEYh TE 7h T 
11'PhIIY=1 

+ Z j[n ah(X, Uh, VUh)]EPh 

E glh, n 

< C g Q 

In order to prove inequality (4.1), consider an arbitrary simplex T E 9; and 
an arbitrary face E E Fh,Q of T and denote by Yh I co, w ) E {T, OE, OT}, 

the set of all functions _ E Y h with supp((o) c co. Lemma 5.1, equation (6.5), 
and the definition of Yh then yield 
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c1C41hTI |-V *a h(, Uh, Vuh) -bh(, Uh, VVUh)11O,p; T 

< SUp IIV(VTV)IIjqj-T 
VErI I T\101 

,q 

6.1*, J 
Iv Th (x, Uh, VUh)-bh (X, Uh, VUh)} V/TV 

(6.10)T 

SUp 1IV(YTV)IIj0q;T(Fh(Uh), YITV) 
VErm I T\{0} 

< SUp (Fh(Uh),(o) 

,PEYh I T 

and, using inequality (6.10), 
(6.11) 

C2C6 C7Uh, VUh)]Ellp;E 

< sup c61c11hI4PIIaII' j[n -gh(x, Uh, VUh)]EYEPU 
aErIk I E\10167 qE 

sup c-c-lhll/PIIUIIff aErlk I E\{0} 

{(Fh(Uh), YEPU) 

- l{-V * ah(X, Uh, VUh) - bh(X, Uh, VUh)}IEPC} 
E 

< SUp (Fh(Uh)( o) 
,PEYh I WE 

II P Iy=1 

+ c hEjl - V * h(, Uh, VUh) - bh(, Uh, VUh)llo,p;WIE 

<C SUp (Fh(Uh) , () 
,PEYhIWE 

Inequalities (6. 10) and (6. 1 1) imply that 

(6.12) IT < C SUp (Fh(Uh) ,() 
(DE Yh C OT 

I (P11 = 

and 

1/p 

(6.13) { pT} <clau) 

Inequalities (6.8) and (6.13), in particular, prove inequality (4.1). 
Propositions 2.1 and 4.1 and inequalities (6.6), (6.7), (6.8), (6.9), (6.12), and 

(6.13) yield the following a posteriori error estimates for problem (6.1). 

Proposition 6.1. Let u E X be a weak solution of problem (6.1) which is regular 
in the sense of Proposition 2.1, and let Uh E Xh be an approximate solution of 
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the corresponding discrete problem which is sufficiently close to u in the sense of 
Proposition 2.1. Then the following a posteriori error estimates hold: 

1/p 1/p 

IIU-UhII1,r < Cl Z T1 +C2 jCT 

LTE_)h TE gh ) 
+ c31IF(uh) -Fh(Uh)II Y + C4IlFh(Uh)IlYh 

and 
il/p 

IT < C511U- UhII1,r;wT + C6 t E , VTEh. 
TICWT 

Here, E6T and IT are given by equations (6.2) and (6.3), and IIF(Uh)- Fh (Uh) IYh 
and IlFh (Uh) II y are the consistency error of the discretization and the residual 
of the discrete problem, respectively. 
Remark 6.2. Proposition 6.1 can easily be extended to the case of Neumann 
boundary conditions. One only has to replace F in equations (6.2) and (6.3) by 
the part of the boundary on which Dirichlet boundary conditions are imposed. 
The first estimate of Proposition 6.1 also holds if I2T is defined using the original 
functions a and b instead of the projected ones ah and bh . The CT-term then 
of course disappears. If the functions a and b are sufficiently smooth, one 
may also use higher-order approximations ah and bh instead of the present 
low-order ones. 5 

As mentioned before, Proposition 6.1 can be applied to example (2) only 
in the case a > 2. Observing that for 1 < a < 2 the strong monotonicity 
of F implies the unique solvability of the corresponding weak problem, we 
obtain from Remark 2.3 and inequalities (6.6), (6.7), (6.8), (6.9), and (6.13) 
the following result which complements the results of [9]. 

Proposition 6.3. Let 1 < a < 2 and denote by u E W a(Q), u = O on F, the 
unique solution of 

J IIVUIKa-2VUVV = j fv Vv E W1 ,a(Q), v = 0 on F. 

Let Uh E Xh be an approximate solution of a discretization of the above problem. 
Then the following a posteriori error estimates hold: 

IIU-UhIIl,a ? C1 }T + C2 { } 
(TE9Xh TEJ`Sh J 

+ c31IF(uh) -Fh(Uh)IYh' + C4IlFh(Uh)IYh' 

and { } 1/a {Z } 1/a(-1) 

{E T) <? C5cIU - UhII11, + C6 { 

Here, CT, ?1T, IIF(uh) - Fh(uh)IIy', and IIFh (Uh)IIy are as in Proposition 6.1. 
Moreover, 

CT =hTIIfH-O,TfIO,a;T VTE8h, 
if Uh is piecewise linear. 
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As mentioned before, example (6) exhibits a simple bifurcation from the triv- 
ial branch at the simple eigenvalues of the Laplacian. Combining the results of 
?3 with those of this section, we obtain the following a posteriori error estimate. 

Proposition 6.4. Denote by A* E R and u* E W1 P(il), u* = 0 on F, p > n, a 
simple eigenvalue of the Laplace equation with homogeneous Dirichlet boundary 
conditions and a corresponding eigenfunction with fA U* = 1 . Let Ah E R and 
Uh E Xh be a solution of 

JVUhVVh-)UhjUhVh +j UVh=O V? hEXh, 

where Xh C {V e W1'P(Q) n W1 (Q): v = 0 on F} is a finite element space 
corresponding to 3h consisting of piecewise polynomials, and where B E N, 
fi > n. If Ah and Uh are sufficiently close to A* and u*, the following a 
posteriori error estimates hold: 

I)h-+IuhuIl~?c{ll juh- + } l/} 

and 
1/p 

/Uh-1 + Z 'CI 2 ?c2{Vth- *I+ IUh-U II1,P}, 
T ETEg J 

where 

UlT:= gfhIIT-AUh-AhUh11P,p;T+ Z hEIIU9nuhIEIIp;E}. 
I ECO T\r 

Proof. Observe that the consistency error of the above discretization vanishes; 
Proposition 6.4 then follows from inequalities (6.6), (6.7), (6.8), and (6.9) and 
the results of the third part of ?3 with 1 E Y(V, IR) given by 

l(v) := Jv V E W1P(Q), v = Oon I. o1 

When comparing Propositions 6.1 and 6.4, we remark that the latter only 
yields global lower bounds on the error. This is due to the global nature of the 
functional 1 defined above. 

We conclude this section with a simple example of an a posteriori error 
estimator which is based on the solution of auxiliary local problems and which 
generalizes the estimator introduced in [4, 5]. For simplicity we assume that 
p = q = r = 2. We choose an arbitrary vertex x0 in the partition Th and keep 
it fixed in what follows. Denote by 98 and 90 the set of all T E Th and of all 
E E E, respectively, which have x0 as a vertex. Put No := UTE., T. Let 

Xh := Y :=YhI Xc0o 

and define the operator B E Y(Xh, Yh') by 

(Bu, ):-j V(PtAoVu Vu E Xh, 9 E Yh, 
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where 
Ao A(xo, Uh (XO), 7ro,0 (V Uh)) . 

Note that the operator B is obtained by first linearizing around Uh the dif- 
ferential operator associated with problem (6.1), then freezing the coefficients 
of the resulting linear operator at x0, and finally retaining only the principal 
part of the linear constant-coefficient operator. Since VUh may be discontinu- 
ous, its value at x0 is approximated by the L2-projection 7rO,Wo,,(VUh) . Other 
constructions are of course also possible. 

Since the matrix A(x, y, z) is symmetric and positive definite for all x E 
Q, y E R, z E Rn, and since the functions in Xh = Yh vanish on Ocoo, 
we immediately obtain from Korn's inequality that B E Isom(Xh, Yh*). Let 
uo E Xh be the unique solution of 

(6.14) (Buo,/)= (F(uh), (P) V( E Yhh 

and set 

(6.15) ?1xO := IIUOl,2;co. 

Note that problem (6.14) is equivalent to 

L0vftAovuo= ah(X, Uh, VUh)V( j bh(x, Uh, VUh)(O V( E Yh. 

This shows that qxo falls into the class of a posteriori error estimators originally 
introduced in [4, 5] for the Poisson equation. 

Lemma 5.1 and equations (6.5) and (6.12) immediately imply that 
1/2 

C11Fh(Uh)11- < IT 6 <_ C1-PhF(U0)II 
TeJX 

Together with Proposition 4.3, this yields the following result. 

Proposition 6.5. Let xo be an arbitrary vertex in the triangulation gh. Then 
there are two constants cl, c2, which only depend on the polynomial degree of 
the space Xh and on the ratio hT/QT, such that the following inequalities hold: 

1/2 ?tx?2{Z 2l1/2 

C1{E ?1T} <_ ?x0 < C2 { ?T} 

Here, 7T and qxO are given by equations (6.3) and (6.15), respectively. 

7. EIGENVALUE PROBLEMS FOR SCALAR LINEAR ELLIPTIC OPERATORS 

OF 2ND ORDER 

As an example for the treatment of eigenvalue problems, we consider in this 
section the problem 

(7.1) -V * (A(x)Vu) + d(x)u = Au in Q, 
u=O onI. 

Here, d E C(Q, R+) and A E C1 (Q, RnXf n) are such that A is symmetric and 
uniformly positive definite on Q. Of course, we are only interested in solutions 
u which do not identically vanish on Q. 
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When considering A as a parameter, problem (7.1) can be treated as a bifur- 
cation problem similar to example (6) of the previous section. Here, we adopt 
a different strategy and define 

X:= Y:= R x{u e W 2(Q): u = 0 on F}, 

11 * IIX := 11 * II Y := {I1 . j2 + 11.1112 }1/2, 

(F([X, u]), [u, v]) j {Vv'AVu + duv - Auv} + j {j U2 - 1 

Then, [A , u] E X, lull0,2 = 1, is a weak solution of problem (7.1) if and only 
if it is a solution of equation (1.1). Moreover, one easily checks that [A, u] is 
a regular solution in the sense of Proposition 2.1 if and only if A is a simple 
eigenvalue of the differential operator associated with problem (7.1). 

As in the previous section, we do not specify the discretization of problem 
(7.1) in detail. We only assume that 

Xh =RX Vh CX, Yh =RX Wh C Y, 

(Fh ([)h Uh]), [uh Vh]) = (F([2h Uh]), [uh Vh]) 

VLh, Uh] E Xh , [Ph , Vh] E Yh 

where Vh, Wh are finite element spaces corresponding to 9h which consist 
of affinely equivalent elements in the sense of [10] and which satisfy {Vh E 
SI : Vh = 0 on F} c Wh. Obviously, the consistency error of the above 
discretization vanishes. Moreover, [Ah, Uh] E Xh is a solution of equation 
(1.2) if and only if 

j{VvhAVuh + dUhVh} = Ah j UhVh VVh E Wh, 
(7.2) f 

Hence, problem (1.2) is equivalent to a standard finite-dimensional eigenvalue 
problem. In what follows, we will always assume that [Ah , Uh] E Xh is a solution 
of problem (7.2). 

Let m be the maximal polynomial degree of the functions in Wh . Proceeding 
as in the previous section, we set 
(7.3) 

Ah := 71,TA, 

dh :E 70, Td, 

Rh 0[0 Ih]b 

Yh =R x span{//TV, YEP: V E I"ml T, a E HmlE, T E h, E E 9'h,n} 

eT T={hil- V. ((A - Ah)Vuh) + (d - dlJ)Uhll0,2;T 

+ 1/2 

+E hE|n*(AA)VUh)]E l2;E 
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1T = {hT -T V (AhVuh) + dhUh - AhUh I0,2; T 

(7.4) 1/2 

+ > hEII[n * (AhVUh)]EII2;E , 
ECO9T\r 

and define Fh in the same way as F with A and d replaced by Ah and dh, 
respectively. Note that 

(7.5) eT < ChT{2IAI12,oo;TIIUh l 1,2;T + lIdIll;TlIUhIIo,2;T} 

With the same arguments as in the previous section we conclude that 

(F([Ah, Uh]), [U, V]) = E J {-V (AVu) + duh - ihUh}V 

+ E j[n (AVuh)]Ev V[u, v] E Y, 
EE 9h,Qj 

(Fh([Ah, Uh]), [u, V]) = E I {-v (AhVuh) + dhUh - ihUh}V 

+ E j[n * (AhVUh)]EV V[U, v] E Y, 
E E9h, Q2 

1/2 

(7.6) || (Idy-Rh)*[F([)h, UhI) - Fh([hLh, Uh])]IIY* ? C e - 

1/2 

(7.7) IIF([Ah, Uh]) -FhP([h, Uh])I1- ? c C e- 

1/2 

(7.8) Id I Rh)*Fh([)h, Uh])IIyy - 2 <} 
T69g 

1/2 

Th,7 

(7.10) t7T < SUp 11[0, V]lly (Fh([Ah, Uh]), [0, V]). 

[O,V]EYh 
SUPPVCWCT 

Inequalities (7.8) and (7.10), in particular, prove inequality (4.1). 
Propositions 2.1 and 4.1 and inequalities (7.6)-(7.10) yield the following a 

posteriori error estimate for problem (7.1). 

Proposition 7.1. Let A be a simple eigenvalue of the differential operator as- 
sociated with problem (7.1), and let u be a corresponding eigenfunction with 
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IIUII0,2 = 1. Let [Ah, Uh] E Xh be a solution of problem (7.2) which is suf- 
ficiently close to [), u] in the sense of Proposition 2.1. Then the following a 
posteriori error estimates hold: 

1/2 ~~~~1/2 

IA - Ahl +IU -UhIII12< l 2?c{ T+ c2{Ze2 
T Egh TE,'h 

and 1/2 }1/2 
12 

r 
12 

)IT < C3{2- Ahl + IUl-Uhl11,2} + C4 T Z - 
L TE ) TEghJ 

where the constants cl, , c4 only depend on the polynomial degree of the 
spaces Vh and Wh and on the ratio hT/QT, and where 6T and ?IT are given 
by equations (7.3) and (7.4), respectively. 

Remark 7.2. The condition that ['h, Uh] has to be sufficiently close to [A, u] 
essentially means that IA - AI has to be smaller than the distance of A to its 
neighboring eigenvalues. In contrast to Proposition 6.1, we obtain in Proposi- 
tion 7.1 only a global lower bound on the error. This is due to the global nature 
of the constraint fc U2 = 1 inherent in the definition of F. Proposition 7.1 
can easily be extended to the case of Neumann boundary conditions. One only 
has to replace r in equations (7.3) and (7.4) by the part of the boundary on 
which Dirichlet boundary conditions are imposed. ai 

8. STATIONARY, INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

As an example for the treatment of elliptic systems we consider the stationary, 
incompressible Navier-Stokes equations 

-vAu+(u.V)u+Vp=f inQ, 
(8.1) V.u=0 inQ, 

u=O onE, 

where v > 0 is the constant viscosity of the fluid. 
In order to cast problem (8.1) into the framework of ?2, set 

M:= {u E WI 2(Q), :u= 0 on F}, Q:= {p E L2(): p =0}, 

and define 

X:= Y:=Mx Q, 11HIIX := 11IIY := {HIIl_l,2+12O11,2} 1/2 

(F([u , p]) , [v , q]) := v VuVv + (u V)uv- PV v+ jqV .u- fv. 

Let Mh C M and Qh c Q be two finite element spaces corresponding to gT 
consisting of affinely equivalent elements in the sense of [10]. We assume that 
there are two integers k, 1 > 1 such that 

[SI, f]nlM C Mh C [5k Oln 

and 
S,10fnQcQh CSh ? or S?'1nfQC Qh CSJ 
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Define 

Xh = Yh = Mh X Qh, 

(Fh ([Uh, Ph]), [Vh, qh]) 

=(F([Uh, Ph]), [Vh, qh]) 

(8.2) + T Zhj{-VAUh + (Uh *V)Uh +VPh -f}{(uh *V)Vh + Vqh} 

+3 EE hE J[Ph]E[qh]E + | V V UhV * Vh. 
EE9'h, a 

Here, a > 0, 3 > 0 are stability parameters. If a > 0, 3 > 0, the above 
discretization is capable of stabilizing both the influence of the convection term 
and of the divergence constraint without any conditions about the spaces Mh, 
Qh or the Peclet number hTV-1 (cf. [23], where also optimal a priori error 
estimates are established). The case a = 3 = 0 corresponds to the standard 
mixed finite element discretization of problem (8.1). The spaces Mh, Qh then 
have to satisfy the Babuska-Brezzi condition 

(8.3) inf sup fTPhV 2 Uh > u> 
PhEQh\{O}UhEMh\{O} I1Ph l0,21hUh1l11 2 

with a constant ,B independent of h. Moreover, the Peclet number hTV-l 

must be sufficiently small in order to balance the influence of the convection 
term (cf. [17], where examples of spaces Mh, Qh satisfying inequality (8.3) 
are also given). 

If a = 3 = 0, the consistency error obviously vanishes. If 3 > 0, we 
conclude from standard inverse estimates that it is bounded by 

(8.4) 

|IF([uh, Ph]) - Fh([Uh Ph])llYh* 

- sup 3 E h2T {-vAuh + (Uh * V)Uh + VPh - f} 
[Vh ,qh]EYh 

1[Vh, qh]l 1Y=l I TE7 

{(Uh *V)Vh + Vqh} 

+ 3 Z hE [Ph]E[qh]E + |5 V * UhV * Vh 

< C( 1 + aj3( 1 + hlUh l| 1, 2) 

* { Z ['41 - vAuh + (Uh *V)Uh + VPh - llo,2; T + liV Uh ll0, 2; T] 

1/2 

+ E hElIPhIE l2;EI} 
EE9' J, 

In order to cast this discretization into the framework of ?4, we define Fh in 



A POSTERIORI ERROR ESTIMATES FOR NONLINEAR PROBLEMS 469 

the same way as F with f replaced by lro, Tf and set 

Rh[u,pI:= [Ihul ..*,IhUn, 0i, 

Yh := span [ Y/TV, 0], [ VIEPU, 0], [?, VITP]: V E [rm I Tl , ff E [lm'|I E]n , 

PErlk-1IT, TESh-, E E9h,nQ 

where m:= max{2k- 1, 1- 1} and m':= max{k - , 1}. 
Lemma 5.1 and inequality (5.1) immediately imply 

IIFh([Uh, Ph]) -F([Uh Ph])tty* = sup l [(f-7r, T)Vh 
h [vh,qh]EYh TEghJ 

(8.5) 11 [Vh , qhIll Y= 1 

(8.5) ] ~~~~~~~~~~~~~~~~~~~~~1/2 

<c{ E h 2If_7r0,Tfl,2;T} 

and 

II(Idy -Rh) [Fh([uh Phi) - F([Uh, Ph1) lY* 
nr 

= up T E J (fi -70, Tfi)(Vi-IhVi) 

<c C {z If_ 7,TflI12;T} 

For abbreviation, we define for all T E 9h 

Q1T ={hTl - VAUh + (Uh *V)Uh + VPh - 7TfIIO,2;T 

(8.7) 1/2 

+ y hEII[V9nuh-PhniE I|2;E + 11V Uh I0,2;T 

ECa9T\r 

Observing that the identity 

(Fh ([Uh, PhI), [v, q]) 

= {j{-/AUh + (Uh V)uh + VPh-7o, rf}v + qV *u } 
(8.8) T E /hn 

+ jk/OV(nUh -PhnIEV 
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holds for all [v, q] e Y, we conclude from Lemma 5.1 and inequalities (5.1), 
(5.2) that 
(8.9) 
||Fh ([Uh,5 Ph ]) I y 

= sup Z {JT {VAUh + (uh V)uh + VPh - rO,T + fqfvh UhI 
[vh,qh]EYh TEgh T 

Il[h ,qh]IIY=l 

+ E J[(nUh PhnEVh 

EE 8'h, 

1/2 

TEg,' 

and 
(8.10) 

11(Idy -Rh)* Fh([Uh, Phi) 11Y* 

sup : {ZJ{A Uh i + (Uh V)Uh, i + OiPh 7, TfiL} 
I[v,q]EIY= 
I[v,q]EIy= T Ef _q 

* tVi-IhVil + qV * Uhf 

n 

+ E zf[vOnfUh, i-Phni]E(Vi-IhVi) 

EE9'h,n i=l 

1/2 

< C 2 

?IT, 

In order to prove inequality (4. 1), consider an arbitrary simplex T E gh and an 
arbitrary face E E _h aQ of T and define Yh I co, CO E {T, COE, OT}, as in ?6. 
The definition of Yh, equation (8.8), and Lemma 5.1 then yield the estimates 

Cl?1 V - UhIIO,2; T 

< sup IIrIIO2.T f V *UhVTr 
rEnk-II T1\ {O} T 

(8.11) = sup (Fh([uh,PhI) [ 0, yTr])IIrI I2;T 
rEnl,II T\{0} 

< SUp (F-h([Uh, Ph]),[v, q]), 
[v,q]EYh I T 
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(8.12) 
CIC4 2TII - vUh + (Uh V)Uh + VPh- 7O,TfIIO,2;T 

< SUp 11{ |V/(YTW)I1I22;T j A{-AUh + (Uh * V)Uh + VPh - 7EO, Tf} VTW 
WE[[m I T]n\{O} ' 2' 

T 

- SUp IIV(YITW)II0 2;-T(Fh([Uh Phi) [/TW 011) 
WE [flm l T]n\{0} 

< SUp (Fh([Uh,ph],[v,q]) 

[v,q]EYhI T 

I[v, q]jIy=j 

and, using inequality (8.12), 
(8.13) 

C2C6-1 C 1h 1/2 
II[vanUh -PhnfIE112;E 

< sup -1C C-1 [ U Ph n]VEPa 
OrE[fmlm I E cn2c6 C7 I&ILI2; EJL'~l 

-1- 1/2 '- 
- sup c2c6 C7 

- 
E1c fll2;E 

a[l/I E] \{?} 

*(Fh ([Uh Ph]) 5[VEPcx, 0]) 

- -J {AUh + (Uh * V)Uh + VPh -ro, Tf}lfEPa} 
CE) 

< sup (Fh([UhPh]) [v, q]) 

[v,q]EYhI wE 

jj[v, q]jjy=1 

+ c61hE11 - VAUh + (Uh * V)Uh + VPh- 7O,TfII0,2;WE 

< c sup (Fh([Uh , Ph]), [v, q] 

[v,q]EYhI E 
jj[v,q]jjy=j 

Inequalities (8.1 1)-(8.13) imply 

(8.14) 1?T <?C sup (F-h([Uh Ph]), [v, q]) 

[v,q]Yh= 1T 

and 

1/2 

(8.15) t }T1 <- C||Fh([Uh 5 Ph])11 ih 
T E,?h~~~~~~~~~~~ 

Inequalities (8.9), (8.10), and (8.15) prove inequality (4.1) and show that, up 
to multiplicative constants, IIFh ([Uh, Phi) I*. is bounded from above and from 

below by {T#}11/2. Propositions 2.1 and 4.1 and inequalities (8.4), (8.5), 
(8.6), (8.9), and (8.14) now yield the following a posteriori error estimate, which 
is a generalization of the results in [25, 27]. 
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Proposition 8.1. Let [u, p] be a weak solution of problem (8.1) which is regular 
in the sense of Proposition 2.1, and let [Uh, Ph] E Xh be a solution of 

(Fh([Uh, Ph]), [Vh, qh]) = O, V[Vh, qh] E Yh, 

where Fh is given in equation (8.2), which is sufficiently close to [u, p] in the 
sense of Proposition 2.1. Then the following a posteriori error estimates hold: 

{}~~~1/2 

{llu Uhll, 2 + IIP -Ph 0g 2} <? CI[1 + (1 + a)30( + llUhlll 2)] T 

+ C2 { E hTf7r,O Tfll02;T} 

nlT < C3{||U UhI1V,2;WT + IIP -Ph IIO2;wT} 

+C4 {Z h _7Ilf-TO,T'fll2;TI} 
TCWT T' C COT 

where nlT is given by equation (8.7) and the constants cl, ..., c4 only depend 
on the polynomial degrees of the spaces Mh, Qh and on the ratio hT/QTI 

Remark 8.2. Proposition 8.1 can be extended to the case of the slip boundary 
condition 

u * n = T(vu, p) - [n * T(vu, p) * n]n = 0, 

where 

T(u, p) += &() Puj+ aju1)-P ij j 

2~~~~~~~ I<i, j<n 
denotes the stress tensor. One then has to replace vVu-pI in equation (8.7) by 
T(vu, p) , and F by the part of the boundary on which the no-slip condition u = 
0 is imposed. Here, I:= (3j)1<i,j<n denotes the unit tensor. Of course, the 
discretization then also has to take account of the different boundary condition 
(cf., e.g., [24, 26]). 0 

Remark 8.3. The previous results can also be extended to non-Newtonian fluids. 
Combining the arguments used to establish Propositions 6.1, 6.3, and 8.1, one 
can prove that the error estimator of [9] also yields local lower bounds similar 
to the second estimate of Proposition 8.1. 0 

Next, we introduce an a posteriori error estimator for problem (8.1), which 
is based on the solution of discrete local Stokes problems and which fits into 
the framework of Proposition 4.3. This estimator is an extension to the Navier- 
Stokes equations of the one introduced in [4, 5] for the Poisson equation. 

We choose an arbitrary vertex xo in the partition $h and keep it fixed in 
what follows. Let wo, $0 and Go be as in ?6. Put 

Mo :=spant{VTV, VEPCf:lV E Tnm"|T]n, a E [mI E]n, T E 98, E E X0} 
Qo :span{ VTp :P Eflk- IIT, T E go, 
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where m := max{2k - 1, / - 1}, m' := max{k - 1, 1}, and m" 
max{m, k + n - 1}, and define 

Xh:= Yh:= Mo x QO, 

(B([v, q]), [w, r]):= v VvVw - qV*w 

+ rV.v V[v,q], [w,r]EXh. 

The definition of m" implies that VTVq E Mo for all q E Qo. Together with 
Lemma 5.1, this shows that the spaces Mo, Qo satisfy an analogon of equation 
(8.3). Hence, we have B E Isom(Xh, Yh*). Let [uo, P0] E Xh be the unique 
solution of 

(8.16) (B([uo, po]), [w, r]) = (Fh([Uh ,Ph]), [w, r]) V[w, r] Eh, 

and define 

(8.17) 1xo := {VIIUO11,2;o + IIP0II,2;o}11/2 
Note, that problem (8.16) is equivalent to 

VJ VUOVW-J POV * w = v J VUhVW + J (Uh V)UhW 
00 00 00 0 

-XPhV * - W 7, TfW VW E Mo, 
00 0 

JrV.uo=J rV Uh VrEQo. 
00 00 

This shows that qx0 falls into the class of a posteriori error estimators originally 
introduced in [4, 5] for the Poisson equation. 

Obviously, we have Yh I c,0 C Yh . Lemma 5. 1 and equation (8.8), on the other 
hand, immediately imply 

IIFh([Uh, Ph]) II * 

- sup >: -Uh + (Uh * V)Uh + VPh{ Jo, TfJV + qV Uh 

[v, q]E Yh TE69o 
jj[v,q]jjy=1 

+ E J[Vanuh-Phn]EV 
E9o 

{}~~~1/2 

?EC 

Together with inequality (8.14), this proves 

IIFh([Uh, Ph])IIy* < C sup (Fh([Uh, Ph]), [v, q]) 

[v,q]YJh I o 

j[v, q]jjy=1 

These results and Proposition 4.3 yield the following proposition, which is a 
generalization of results in [4, 5, 25, 27, 28]. 
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Proposition 8.4. Let xo be an arbitrary vertex in the partition Sh. Then there 
are two constants c1, c2, which only depend on the polynomial degree of the 
spaces Mh, Qh and on the ratio hT/IT, such that the following inequalities 
hold: 

cl~~fZ41/27xoc21/2 
Cl{E ?IT < nxo -< C2 {E T} 

TE J T TE 

Here, IIT and ilxo are given by equations (8.7) and (8.17), respectively. 
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